A Scalable Method for Solving Satisfiability of Integer Linear Arithmetic Logic

نویسندگان

  • Hossein M. Sheini
  • Karem A. Sakallah
چکیده

In this paper, we present a hybrid method for deciding problems involving integer and Boolean variables which is based on generic SAT solving techniques augmented with a) a polynomial-time ILP solver for the special class of Unit-Two-Variable-Per-Inequality (unit TVPI or UTVPI) constraints and b) an independent solver for general integer linear constraints. In our approach, we present a novel method for encoding linear constraints into the SAT solver through binary “indicator” variables. The hybrid SAT problem is subsequently solved using a SAT search procedure in close collaboration with the UTVPI solver. The UTVPI solver interacts closely with the Boolean SAT solver by passing implications and conflicting assignments. The non-UTVPI constraints are handled separately and participate in the learning scheme of the SAT solver through an innovative method based on the theory of cutting planes. Empirical evidence on software verification benchmarks is presented that demonstrates the advantages of our combined method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A System for Solving Constraint Satisfaction Problems with SMT

SAT Modulo Theories (SMT) consists of deciding the satisfiability of a formula with respect to a decidable background theory, such as linear integer arithmetic, bit-vectors, etc, in first-order logic with equality. SMT has its roots in the field of verification. It is known that the SAT technology offers an interesting, efficient and scalable method for constraint solving, as many experimentati...

متن کامل

On the Satisfiability of Modular Arithmetic Formula

Modular arithmetic is the underlying integer computation model in conventional programming languages. In this paper, we discuss the satisfiability problem of modular arithmetic formulae over the finite ring Z2ω . Although an upper bound of 2 2 4) can be obtained by solving alternation-free Presburger arithmetic, it is easy to see that the problem is in fact NP-complete. Further, we give an effi...

متن کامل

On the Satisfiability of Modular Arithmetic Formulae

Modular arithmetic is the underlying integral computation model in conventional programming languages. In this paper, we discuss the satisfiability problem of propositional formulae in modular arithmetic over the finite ring Z2ω . Although an upper bound of 2 2 O(n4) can be obtained by solving alternation-free Presburger arithmetic, it is easy to see that the problem is in fact NP-complete. Fur...

متن کامل

Linear Arithmetic with Stars

We consider an extension of integer linear arithmetic with a “star” operator takes closure under vector addition of the solution set of a linear arithmetic subformula. We show that the satisfiability problem for this extended language remains in NP (and therefore NP-complete). Our proof uses semilinear set characterization of solutions of integer linear arithmetic formulas, as well as a general...

متن کامل

Speeding up the Constraint-Based Method in Difference Logic

Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005